Buoyancy Fluxes in a Stratified Fluid

نویسندگان

  • G. N. Ivey
  • J. Imberger
چکیده

Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed for mean flow Richardson numbers in the range from 0.075 to 1.00 and for Prandtl numbers ranging from 0.1 to 2. The local or instantaneous results indicate that when the turbulent Froude number FrT = 1 the peak value of mixing efficiency is Rf ≈ 0.25, a result independent of the Prandtl number Pr and thus inconsistent with previous laboratory measurements at values of the Pr of 0.7 and 700. The results are consistent, however, with previous laboratory observations in demonstrating that the mixing efficiency Rf decreases rapidly away from this peak value at FrT = 1. Using data from both numerical simulations and laboratory experiments with both shear and grid generated turbulence, simple empirical relationships are developed to estimate Rf, and hence buoyancy flux b, for the entire range extending from active turbulence down to the limit where the effects of viscosity and/or density stratification suppress the vertical buoyancy flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Casson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation

The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...

متن کامل

Turbulent mixing in a stratified fluid

The strength of diapycnal mixing by small-scale motions in a stratified fluid is investigated through changes to the mean buoyancy profile. We study the mixing in laboratory experiments in which an initially linearly stratified fluid is stirred with a rake of vertical bars. The flow evolution Ž . depends on the Richardson number Ri , defined as the ratio of buoyancy forces to inertial forces. A...

متن کامل

Turbulence Modeling in Stratified Flows Subject to Advective Buoyancy Fluxes

The goal of this work is to examine in detail how turbulence evolves in the presence of both vertical stratification and horizontal (straining) buoyancy fluxes. Horizontal density gradients are a ubiquitous feature of estuarine and coastal flows, as are sheared velocity profiles. The combination of these two features produces a buoyancy flux which can be either stabilizing or destabilizing, dep...

متن کامل

Radial intrusions from turbulent plumes in uniform stratification

Laboratory experiments investigate the radial spread of an intrusion created by a turbulent forced plume in uniformly stratified ambient fluid. The flow evolution is determined as it depends upon the ambient buoyancy frequency, N, and the source momentum and buoyancy fluxes, M0 and F0, respectively. The plume reaches its maximum vertical extent, Zm, collapses back upon itself as a fountain and ...

متن کامل

A Finite Element Study of Double Diffusive Mixed Convection in a Concentration Stratified Darcian Fluid Saturated Porous Enclosure under Injection/Suction Effect

Numerical investigation of mixed convection flow in a concentration-stratified fluid-saturated vertical square porous enclosure is investigated by Galerkin finite element method. The forced flow conditions are imposed by providing an inlet at the bottom wall and an outlet with a suction on the top wall. The free convection is induced by introducing a hot but isothermal temperature on the left v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000